Freshness-Aware Scheduling of Continuous Queries in the Dynamic Web

Mohamed A. Sharaf, Alexandros Labrinidis, Panos K. Chrysanthis, Kirk Pruhs
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260, USA
{msharaf, labrinid, panos, kirk}@cs.pitt.edu

ABSTRACT

The dynamics of the Web and the demand for new, active services are imposing new requirements on Web servers. One such new service is the processing of continuous queries whose output data stream can be used to support the personalization of individual user's web pages. In this paper, we are proposing a new scheduling policy for continuous queries with the objective of maximizing the freshness of the output data stream and hence the QoD of such new services. The proposed Freshness-Aware Scheduling of Multiple Continuous Queries (FAS-MCQ) policy decides the execution order of continuous queries based on each query's properties (i.e., cost and selectivity) as well as the properties of the input update streams (i.e., variability of updates). Our experimental results have shown that FAS-MCQ can increase freshness by up to 50% compared to existing scheduling policies used in Web servers.

1. INTRODUCTION

Web databases and HTML/XML documents scattered all over the World Wide Web provide immeasurable amount of information which is continuously growing and updated. To keep up with the Web dynamics, a search engine frequently crawls the web looking for updates. Then, it propagates the stream of updates to its internal databases and indexes.

The problem of propagating updates gets more complicated when the Web server provides users with the service of registering continuous queries. A continuous query is a standing query whose execution is triggered every time a new update arrives [18]. For example, a user might register a query to monitor news related to the NFL. Thus, as new sports articles arrive to the server, all the NFL related ones have to be propagated to that user. As such, the arrival of new updates triggers the execution of a set of corresponding queries, since portions of the new updates may be relevant to the query. The output of such a frequent execution of a continuous query is what we call an output data stream (see Figure 1).

An output data stream can be used, for example, to continuously update a user's personalized Web page where a user logs on and monitors updates as they arrive. It can also be used to send email notifications to the user when new results are available [6, 17].

As the amount of updates on the input data streams increases and the number of registered queries becomes high, advanced query processing techniques are needed to efficiently synchronize the results of the continuous queries with the available updates. That is particularly important when the search engine deploys a continuous monitoring scheme instead of traditional crawlers [16].

Efficient scheduling of updates is one such query processing technique, which successfully improves the Quality of Data (QoD) provided by interactive systems. In this paper, we are focusing on scheduling continuous queries for improving QoD in the interactive dynamic Web. QoD can be measured in different ways, one of which is freshness. The objective of our work is to improve the freshness of the continuous data streams resulting from continuous query execution as opposed to the freshness of the underlying databases [7, 8], derived views [10] or caches [15]. In this respect, our work can be regarded as complementary to the current work on the processing of continuous queries, which considers only Quality of Service metrics like response time and throughput (e.g., [6, 17, 2, 4, 1]).

Specifically, the contribution of this paper is proposing a policy for Freshness-Aware Scheduling of Multiple Continuous Queries (FAS-MCQ). FAS-MCQ has the following salient features:

1. It exploits the variability of the processing costs of different continuous queries registered at the Web server.
2. It utilizes the divergence in the arrival patterns and frequencies of updates streamed from different remote data sources.
3. It considers the impact of selectivity on the freshness of a Web output data stream.

To illustrate the last point on the impact of selectivity, let us assume a continuous query which is used to project the number of trades on a certain stock if its price exceeds $60. Further, assume that there is a 50% chance that this stock’s price exceeds $60. With the arrival of a new update, if the new price is greater than $60 then a new update is added to the continuous output data stream. Otherwise, the update is discarded and nothing is added to the output data stream. So, in this particular example, the arrival of a new update renders the continuous output data stream stale with probability 50%. FAS-MCQ exploits the probability of staleness in order to maximize the overall QoD.

As our experimental results have shown, FAS-MCQ can increase freshness by up to 50% compared to existing scheduling policies used in Web servers. FAS-MCQ achieves this improvement by deciding the execution order of continuous queries based on individual query properties (i.e., cost and selectivity) as well as properties of the update streams (i.e., variability of updates).

The rest of this paper is organized as follows. Section 2 provides the system model. In Section 3, we define our freshness-based QoD
metrics. Our proposed policy for improving freshness is presented in Section 4. Section 5 describes our simulation testbed, whereas Section 6 discusses our experiments and results. Section 7 surveys related work. We conclude in Section 8.

2. SYSTEM MODEL

We assume a Web server where users register multiple continuous queries over multiple input data streams (as shown in Figure 1). Data streams consist of updates of remote data sources that are either continuously pushed to the Web server or frequently pulled by the Web server through crawlers. Each update \(u_i \) is associated with a timestamp \(t_i \). This timestamp is either assigned by the data source or by the Web server. In the former case, the timestamp reflects the time when the update took place, whereas in the latter case, it represents the arrival time of the update at the Web server.

In this work, we assume single-stream queries where each query is defined over a single data stream. However, data streams can be shared by multiple queries, in which case each query will operate on its own copy of the data stream. Queries can also be shared among multiple users, in which case the results will be shared among them. Improving the QoD in the context of multi-stream queries as well shared queries or operators is part of our future work.

A single-stream query plan can be conceptualized as a data flow diagram [3, 1] (Figure 1): a sequence of nodes and edges, where the nodes are operators that process data and the edges represent the flow of data from one operator to another. A query \(Q \) starts at a leaf node and ends at a root node \(O_1 \). An edge from operator \(O_1 \) to operator \(O_2 \) means that the output of operator \(O_1 \) is an input to operator \(O_2 \). Additionally, each operator has its own input queue where data is buffered for processing.

As a new update arrives at a query \(Q \), it passes through the sequence of operators of \(Q \). An update is processed until it either produces an output or until it is discarded by some predicate in the query. An update produces an output only when it satisfies all the predicates in the query.

In a query, each operator \(O_s \) is associated with two values:

- processing cost \((c_s) \), and
- selectivity or productivity \((s_s) \).

Recall that in traditional database systems, an operator with selectivity \(s_s \) produces \(s_s \) tuples after processing one tuple for \(c_s \) time units. \(s_s \) is typically less than or equal to 1 for operators like filters. Selectivity expresses the behavior or power of a filter. Additionally, for a query \(Q_s \), we define three parameters

1. total cost \((C_s) \),
2. total selectivity or total productivity \((S_s) \), and
3. average cost \((C_{avg}^s) \).

Specifically, for a query \(Q_s \) that is composed of a single stream of operators \(O_1, O_2, O_3, \ldots, O_r \), \(C_s \), \(S_s \) and \(C_{avg}^s \) are defined as follows:

\[
C_s = c_1 + c_2 + \ldots + c_r
\]
\[
S_s = s_1 \times s_2 \times \ldots \times s_r
\]
\[
C_{avg}^s = c_1 + c_2 \times s_1 + c_3 \times s_2 \times s_1 + \ldots + c_r \times s_{r-1} \times \ldots \times s_1
\]

The average cost is computed as follows. An update starts going through the chain of operators with \(O_1 \), which has a cost of \(c_1 \). With a “probability” of \(s_1 \) (equal to the selectivity of operator \(O_1 \)) the update will not be filtered out, and as such continue on to the next operator, \(O_2 \), which has a cost of \(c_2 \). Moving along, with a “probability” of \(s_2 \) the update will not be filtered out, and as such continue on to the next operator, \(O_3 \), which has a cost of \(c_3 \). Up until now, on average, the cost will be \(C_{avg}^s = c_1 + c_2 \times s_1 + c_3 \times s_2 \times s_1 \). This is generalized in the formula for \(C_{avg}^s \) above as in [19].

In the rest of the paper, we use lower-case symbols to refer to operators’ parameters and upper-case ones for queries’ parameters.

3. FRESHNESS OF WEB DATA STREAMS

In this section, we describe our proposed metric for measuring the quality of output Web data streams. Our metric is based on the freshness of data and is similar to the ones previously used in [7, 10, 15, 8, 11]. However, it is adapted to consider the nature of continuous queries and input/output Web data streams.

3.1 Average Freshness for Single Streams

In our system, the output of each continuous query \(Q \) is a data stream \(D \). The arrival of new updates at the input queue of \(Q \) might lead to appending a new tuple to \(D \). Specifically, let us assume that at time \(t \) the length of \(D \) is \(|D_t| \) and there is a single update at the input queue; also with timestamp \(t \). Further, assume that \(Q \) finishes processing that update at time \(t' \). If the tuple satisfies all the query’s predicates, then \(|D_{t'}| = |D_t| + 1 \), otherwise, \(|D_{t'}| = |D_t| \). In the former case, the output data stream \(D \) is considered stale during the interval \([t, t']\) as the new update occurred at time \(t \) and it took until time \(t' \) to append the update to the output data stream. In the latter case, \(D \) is considered fresh during the interval \([t, t']\) because the arrival of a new update has been discarded by \(Q \). Obviously, if there is no pending update at the input queue of \(D \), then \(D \) would also be considered fresh.

Formally, to define freshness, we consider each output data stream \(D \) as an object and \(F(D, t) \) is the freshness of object \(D \) at time \(t \) which is defined as follows:

\[
F(D, t) = \begin{cases}
1 & \text{if } \forall u \in I_t, \sigma(u) \text{ is false} \\
0 & \text{if } \exists u \in I_t, \sigma(u) \text{ is true}
\end{cases}
\]

where \(I_t \) is the set of input queues in \(Q \) at time \(t \) and \(\sigma(u) \) is the result of applying \(Q \)'s predicates on update \(u \).

To measure the freshness of a data stream \(D \) over an entire discrete observation period from time \(t_x \) to time \(t_y \), we have that:

\[
F(D) = \frac{1}{t_y - t_x} \sum_{t=t_x}^{t_y} F(D, t)
\]
3.2 Average Freshness for Multiple Streams

Having measured the average freshness for single streams, we proceed to compute the average freshness over all the \(M \) data streams maintained by the Web server. If the freshness for each stream, \(D_i \), is given by \(F(D_i) \) using Equation 2, then the average freshness over all data streams will be:

\[
F = \frac{1}{M} \sum_{i=1}^{M} F(D_i)
\]

3.3 Fairness in Freshness

Ideally, all data streams in the system should experience perfect freshness. However, this is not always achievable. Especially when the Web server is loaded, we can have data streams with freshness that is less than perfect, because of a “back-log” of updates that cannot be processed in time [10]. In such a case, it is desirable to maximize the average freshness in addition to minimizing the variance in freshness among different data streams. Minimizing the variance reflects the system’s fairness in handling different continuous queries.

In this paper, we are measuring fairness as in [14]. Specifically, we compute the average freshness of each output Web data stream. Then, we measure fairness as the standard deviation of freshness measured for each data stream. A high value for the standard deviation indicates that some classes of data streams received unfair service compared to others. That is, they were stale for a longer interval compared to other data streams. A low value for the standard deviation indicates that the difference in service (freshness) among different data streams is negligible, and, as such, the Web server handled all streams in a fair manner.

4. FRESHNESS-AWARE SCHEDULING OF MULTIPLE CONTINUOUS QUERIES

In this section we describe our proposed policy for Freshness-Aware Scheduling of Multiple Continuous Queries (FAS-MCQ). Current work on scheduling the execution of multiple continuous queries focuses on QoS metrics [2, 4, 1] and exploits selectivity to improve the provided QoS. Previous work on synchronizing database updates exploited the amount (frequency) of updates to improve the provided QoD [7, 15, 8]. In contrast, our proposal, FAS-MCQ, exploits both selectivity and amount of updates to improve the QoS, i.e., freshness, of output Web data streams.

4.1 Scheduling without Selectivity

Assume two queries \(Q_1 \) and \(Q_2 \), with output Web data streams \(D_1 \) and \(D_2 \). Each query is composed of a set of operators, each operator has a certain cost, and the selectivity of each operator is one. Hence, we can calculate for each query \(Q \) its total cost \(C \) as shown in Section 2. Moreover, assume that there are \(N_1 \) and \(N_2 \) pending updates for queries \(Q_1 \) and \(Q_2 \) respectively. Finally, assume that the current wait time for the update at the head of \(Q_1 \)’s queue is \(W_1 \), similarly, the current wait time for the update at the head of \(Q_2 \)’s queue is \(W_2 \).

Next, we compare two policies \(X \) and \(Y \). Under policy \(X \), query \(Q_1 \) is executed before query \(Q_2 \), whereas under policy \(Y \), query \(Q_2 \) is executed before query \(Q_1 \).

Under policy \(X \), where query \(Q_1 \) is executed before query \(Q_2 \), the total loss in freshness, \(L_X \), (i.e., the period of time where \(Q_1 \) and \(Q_2 \) are stale) can be computed as follows:

\[
L_X = L_{X,1} + L_{X,2}
\]

where \(L_{X,1} \) and \(L_{X,2} \) are the staleness periods experienced by \(Q_1 \) and \(Q_2 \) respectively.

Since \(Q_1 \) will remain stale until all its pending updates are processed, then \(L_{X,1} \) is computed as follows:

\[
L_{X,1} = W_1 + (N_1 C_1)
\]

where \(W_1 \) is the current loss in freshness and \((N_1 \times C_1)\) is the time required until applying all the pending updates.

Similarly, \(L_{X,2} \) is computed as follows:

\[
L_{X,2} = (W_2 + N_1 C_1) + (N_2 C_2)
\]

where \(W_2 \) is the current loss in freshness plus the extra amount of time \((N_1 \times C_1)\) where \(Q_2 \) will be waiting for \(Q_1 \) to finish execution.

By substitution in Equation 4, we get

\[
L_X = W_1 + (N_1 C_1) + (W_2 + N_1 C_1) + (N_2 C_2)
\]

Similarly, under policy \(Y \) in which \(Q_2 \) is scheduled before \(Q_1 \), we have that the total loss in freshness, \(L_Y \) will be:

\[
L_Y = (W_1 + N_2 C_2) + (N_1 C_1) + W_2 + (N_2 C_2)
\]

In order for \(L_X \) to be less than \(L_Y \), the following inequality must be satisfied:

\[
N_1 C_1 < N_2 C_2
\]

The left-hand side of Inequality 7 shows the total loss in freshness incurred by \(Q_2 \) when \(Q_2 \) is executed first. Similarly, the right-hand side shows the total loss in freshness incurred by \(Q_1 \) when \(Q_2 \) is executed first. Hence, the inequality implies that between the two alternative execution orders, we select the one that minimizes the total loss in freshness.

4.2 Scheduling with Selectivity

Assume the same setting as in the previous section. However, assume that the productivity of each query \(Q_i \) is \(S_i \) which is computed as in Section 2. The objective when scheduling with selectivity is the same as before: we want to minimize the total loss in freshness. Recall from Inequality 7 that the objective of minimizing the total loss is equivalent to selecting for execution the query that minimizes the loss in freshness incurred by the other query. In the presence of selectivity, we will apply the same concept.

We first compute for each output data stream \(D_i \) its staleness probability \(P_i \) given the current status of the input data stream. This is equivalent to computing the probability that at least one of the pending updates will satisfy \(Q_i \)’s predicates. Hence, \(P_i = 1 - (1 - S_i)^{N_i} \), where \((1 - S_i)^{N_i}\) is the probability that all pending updates do not satisfy \(Q_i \)’s predicates.

Now, if \(Q_2 \) is executed before \(Q_1 \), then the loss in freshness incurred by \(Q_1 \) only due to the impact of processing \(Q_2 \) first is computed as:

\[
L_{Q_1} = P_2 \times N_2 \times C_2^{avg}
\]

where \(N_2 \times C_2^{avg} \) is the expected time that \(Q_2 \) will be waiting for \(Q_2 \) to finish execution and \(P_2 \) is the probability that \(D_1 \) is stale in the first place. For example, in the extreme case of \(S_1 = 0 \), if \(Q_2 \) is executed before \(Q_1 \), it will not increase the staleness of \(D_1 \) since all the updates will not satisfy \(Q_1 \). However, at \(S_1 = 1 \), if \(Q_2 \) is executed before \(Q_1 \), then the staleness of \(D_1 \) will increase by \(N_2 \times C_2^{avg} \) with probability one.

Similarly, if \(Q_1 \) is executed before \(Q_2 \), then the loss in freshness incurred by \(Q_2 \) only due to processing \(Q_1 \) first is computed as:

\[
L_{Q_2} = P_1 \times N_1 \times C_1^{avg}
\]
In order for L_{Q_i} to be less than L_{Q_j}, then the following inequality must be satisfied:

$$\frac{N_1C_{avg}^x}{P_1} < \frac{N_2C_{avg}^x}{P_2}$$ \hspace{1cm} (8)

Thus, in our proposed policy, each query Q_i is assigned a priority value V_i which is the product of its staleness probability and the reciprocal of the product of its expected cost and the number of its pending updates. Formally,

$$V_i = \frac{1 - (1 - S_x^i)^{N_i}}{N_iC_{avg}^x}$$ \hspace{1cm} (9)

4.3 The FAS-MCQ Scheduler

The FAS-MCQ scheduler selects for execution the query with the highest priority value at each scheduling point. A scheduling point is reached when: (1) a query finishes processing an input update, or (2) when a new update arrives at the system.

In the second case, the scheduler has to decide whether to resume executing the current query or preempt it. A query is preempted if a new update has arrived at a query with priority higher than the one currently executing. Thus, we need to recompute the priority of the currently executing query based on the position of the processed update along the query operators. For example, if the processed update is at the input queue of some operator O_i, along the query, then the current priority of the query is computed as:

$$\frac{1 - (1 - S_x)}{C_{avg}^x}$$

where S_x and C_{avg}^x are the expected productivity and expected cost of the segment of operators starting at O_x all the way to the root. If O_x has been processing the tuple for δ_x time units, then the current priority is computed as above by replacing c_x with $c_x - \delta_x$.

4.4 Discussion

It should be noted that under our policy, the priority of a query increases as the processing of an update advances. For instance, let us assume that a query has just been selected for execution. At that moment, the priority of the query is equal to the priority of its leaf node or leaf operator. After the leaf finishes processing the update, the priority of the next operator, say O_x, is computed as shown earlier. Intuitively, S_x and C_{avg}^x are greater than S and C_{avg} of the leaf operator because the remaining processing cost decreases and the expected productivity might increase too. Additionally, N_x is equal to one and our priority function monotonically decreases with the increase in N. Thus, overall, the priority of O_x is higher than that of the leaf node. Similarly, the priority of each operator in the query is higher than the priority of the operator preceding it. As such, a query Q_i is never preempted unless a new update arrives and that new update triggers the execution of a query with a higher priority than Q_i.

Also note that under our priority function (Equation 9), FAS-MCQ behaves as follows:

1. If all queries have the same number of pending tuples and the same selectivity, then FAS-MCQ selects for execution the query with the lowest cost.
2. If all queries have the same cost and the same selectivity, then FAS-MCQ selects for execution the query with less pending tuples.
3. If all queries have the same cost and the same number of pending tuples, then FAS-MCQ selects for execution the query with high staleness probability.

In case (1), FAS-MCQ behaves like the Shortest Remaining Processing Time policy. In case (2), FAS-MCQ gives lower priority to the query with high frequency of updates. The intuition is that when the frequency of updates is high, it will take a long time to establish the freshness of the output Web data stream. This will block other queries from executing and will increase the staleness of their output Web data streams. In case (3), FAS-MCQ gives lower priority to queries with low selectivity as there is a low probability that the pending updates will “survive” the filtering of the query operators and thus be appended to the output Web data stream.

5. EVALUATION TESTBED

We have conducted several experiments to compare the performance of our proposed scheduling policy and its sensitivity to different parameters. Specifically, we compared the performance of our proposed FAS-MCQ policy to a two-level scheduling scheme from Aurora where Round Robin is used to schedule queries and pipelining is used to process updates within the query. Collectively, we refer to the Aurora scheme in our experiments as RR. In addition, we considered a FCFS policy where updates are processed according to their arrival times. Finally, we adapted the Shortest Remaining Processing Time (SRPT) policy, where the priority of a query is the reciprocal of its total cost (i.e., $1/C$). The SRPT policy has been shown to work very well for scheduling requests at a Web server when the performance metric is response time [9].

Queries: We simulated a Web server that hosts 250 registered continuous queries. The structure of the query is adapted from [5, 13] where each query consists of three operators: two predicates and one projection. All operators that belong to the same query have the same cost, which is uniformly selected from three possible classes of costs. The cost of an operator in class i is equal to: 2^i time units, where i is 0, 1, or 2.

Selectivities: In any query, the selectivity of the projection is set to 1, while the two predicates have the same value for selectivity, which is uniformly selected from the range [0.1, 1.0].

Streams: The number of input data streams is set to 10 and the length of each stream is set to 10K tuples. Initially, we generate the updates for each stream according to a Poisson distribution, with its mean inter-arrival time set according to the simulated system utilization (or load). For a utilization of 1.0, the inter-arrival time is equal to the exact time required for executing the queries in the system, whereas for lower utilizations, the mean inter-arrival time is increased proportionally. To generate a back-log of updates [10], we have a parameter B which controls the number of bursty streams. A bursty stream is created by adapting the initially generated Poisson stream using two parameters: burst probability (p) and burst length (l). Specifically, we traverse the Poisson stream and at each entry/update we toss a coin, if the tossing result is less than the p, then the arrival time A_b of that update is the beginning of a new burst. Then, the arrival times of each of the next l updates are adjusted so that the new arrival time, A'_b, of an update u_i is set to $(A_i - A_b) * p$, where A_i is the arrival time computed originally under the Poisson distribution. We have conducted several experiments with different settings of the p, l and B parameters. Due to lack of space, we will present the simulation results where p is equal to 0.5, l is equal to 50 updates and B is in the range [0, 10] with the default being 5.
6. EXPERIMENTS

6.1 Impact of Utilization

In this experiment, the selectivity for all operators is set to 1, whereas the processing costs are variable and are generated as described earlier. Figure 2 depicts the average total freshness over all output Web data streams as the load at the Web server increases. In this experiment 5 out of the 10 input data streams are bursty. The figure shows that, in general, the freshness of the output Web data streams decreases with increasing load. It also shows that the FAS-MCQ policy provides the highest freshness all the time. The freshness provided by SRPT is equal to that of FAS-MCQ for utilizations up to 0.5. After that point, with increasing utilization, queues start building up. That is when FAS-MCQ gives higher priority to queries with shorter queues and low processing cost in order to maximize the overall freshness of data, thus outperforming SRPT. At 95% utilization, FAS-MCQ has 22% higher freshness than SRPT. If we report QoD as staleness (i.e., the opposite of freshness [15]), then FAS-MCQ is 41% better than SRPT, with just a 20% overall average staleness.

6.2 Impact of Bursts

The setting for this experiment is the same as the previous one. However, the utilization at all points is set to the default value of 90%. In Figure 3, we plot the average total freshness as the number of input data streams that are bursty increases. At a value of 0, all the arrivals follow a Poisson distribution with no bursts, whereas at 10, all input data streams are bursty as described in Section 5.

Figure 3 shows how the total average freshness decreases when the number of bursty data streams increases. It also shows that FAS-MCQ provides the highest freshness compared to the other policies. Notice the relation between FAS-MCQ and SRPT: as the number of bursty streams increases, the difference in freshness provided by FAS-MCQ compared to SRPT increases up until there are 5 bursty streams. At that point, FAS-MCQ has 20% higher freshness than SRPT. At the same time, FAS-MCQ has 1.8 the freshness of the RR policy and 3.6 the freshness of the FCFS policy.

After there are 7 bursty input streams, the performance of the FAS-MCQ and SRPT policies get closer. The explanation is that at a lower number of bursty streams, FAS-MCQ has a better chance to find a query with a short queue of pending updates to schedule for execution. As the number of bursty streams increases, the chance of finding such a query decreases, and as such, SPRT is performing reasonably well. At 10 bursty streams, FAS-MCQ has only 16% higher freshness than SRPT.

6.3 Impact of Selectivity

In this experiment, the cost for all operators is set to 1 time unit. However, the selectivity is chosen uniformly from the range [0.0, 1.0]. Figure 4 depicts how the freshness decreases with increasing load at the Web server. The figure also shows that FAS-MCQ still provides the highest freshness, as it considers the probability that an update will affect the freshness of the corresponding data stream. That is opposite to SRPT which will give a higher priority to a query with low selectivity since a low selectivity will provide a low value for C_{avg}. Hence, SRPT will spend time executing queries that will only append fewer updates to their corresponding output data streams.

In this experiment, RR behaves better than SRPT at high utilizations. At a 95% utilization, FAS-MCQ gives 50% higher freshness than RR and 63% higher than SRPT.

Figure 5 shows the standard deviation of freshness for the same experiment setting. The figure shows that for all policies, the deviation increases with increasing load where some output data streams are stale for longer times compared to other data streams. However, FAS-MCQ provides the lowest standard deviation for most values of utilization. As the utilization approaches 1 (i.e., when the Web server is about to reach its capacity), the fairness provided by FAS-MCQ gets closer to that of FCFS. Thus, FAS-MCQ is at least as fair as FCFS, even at very high utilizations.

However, the FCFS policy behaves poorly if we look beyond fairness and into the average total freshness: as shown in Figure 4, FAS-MCQ provides 96% higher average freshness compared to FCFS, despite having the same fairness.
7. RELATED WORK

The work in [7, 8] provides policies for crawling the Web in order to refresh a local database. The authors make the observation that a data item that is updated more often should be synchronized less often. In this paper, we utilize the same observation, however, [7, 8] assumes that updates follow a mathematical model, whereas we make our decision based on the current status of the Web server queues (i.e., the number of pending updates). The same observation has been exploited in [15] for refreshing distributed caches and in [12] for multi-casting updates.

The work in [10] studies the problem of propagating the updates to derived views. It proposes a scheduling policy for applying the updates that considers the divergence in the computation costs of different views. Similarly, our proposed FAS-MCQ considers the different processing costs of the registered multiple continuous queries. Moreover, FAS-MCQ generalizes the work in [10] by considering updates that are streamed from multiple data sources as opposed to a single data source.

Improving the QoS of multiple continuous queries has been the focus of many research efforts. For example, multi-query optimization has been exploited in [6] to improve the system throughput in an Internet environment and in [13] for improving the throughput of a data stream management system. Multi-query scheduling has been exploited by Aurora to achieve better response time or to satisfy application-specified QoS requirements [2]. The work in [1] employs a scheduler for minimizing the memory utilization. To the best of our knowledge, none of the above work provided techniques for improving the QoS provided by continuous queries.

8. CONCLUSIONS

Motivated by the need to support active Web services which involved the processing of update streams by continuous queries, in this paper we studied the different aspects that affect the QoS of these services. In particular, we focused on the freshness of the output data stream and identified that both the properties of queries, i.e., cost and selectivity, as well as the properties of the input update streams, i.e., variability of updates, have a significant impact on freshness. For this reason, we have proposed and experimentally evaluated a new scheduling policy for continuous queries that exploits all of these aspects to maximize the freshness of the output data stream. Our proposed Freshness-Aware Scheduling of Multiple Continuous Queries (FAS-MCQ) policy can increase freshness by up to 50% compared to existing scheduling policies used in Web servers. Our next step is to study the problem when MCQ plans include shared operators as well as join operators.

Acknowledgments: We would like to thank the anonymous reviewers for their thoughtful and constructive comments.

9. REFERENCES